A synergistic blocking effect of Mg2+ and spermine on the inward rectifier K+ (Kir2.1) channel pore
نویسندگان
چکیده
Inward rectifier K(+) channels (Kir2.1) exhibit an extraordinary rectifying feature in the current-voltage relationship. We have previously showed that the bundle-crossing region of the transmembrane domain constitutes the crucial segment responsible for the polyamine block. In this study, we demonstrated that the major blocking effect of intracellular Mg(2+) on Kir2.1 channels is also closely correlated with K(+) current flow, and the coupled movements of Mg(2+) and K(+) seem to happen in the same flux-coupling segment of the pore as polyamines. With a preponderant outward K(+) flow, intracellular Mg(2+) would also be pushed to and thus stay at the outermost site of a flux-coupling segment in the bundle-crossing region of Kir2.1 channels to block the pore, although with a much lower apparent affinity than spermine (SPM). However, in contrast to the evident possibilities of outward exit of SPM through the channel pore especially during strong membrane depolarization, intracellular Mg(2+) does not seem to traverse the Kir2.1 channel pore in any case. Intracellular Mg(2+) and SPM therefore may have a synergistic action on the pore-blocking effect, presumably via prohibition of the outward exit of the higher-affinity blocking SPM by the lower-affinity Mg(2+).
منابع مشابه
Electrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetr...
متن کاملFunctional Roles of Charged Amino Acid Residues on the Wall of the Cytoplasmic Pore of Kir2.1
It is known that rectification of currents through the inward rectifier K(+) channel (Kir) is mainly due to blockade of the outward current by cytoplasmic Mg(2+) and polyamines. Analyses of the crystal structure of the cytoplasmic region of Kir2.1 have revealed the presence of both negatively (E224, D255, D259, and E299) and positively (R228 and R260) charged residues on the wall of the cytopla...
متن کاملSpermine Block of th e Strong Inward Rectifier Potassium Channel Kir2.1: Dual Roles of Surface Charge Screening and Pore Block
Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg 2 . Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenopu...
متن کاملSpermine Block of the Strong Inward Rectifier Potassium Channel Kir2.1
Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg(2+). Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenop...
متن کاملSer165 in the Second Transmembrane Region of the Kir2.1 Channel Determines its Susceptibility to Blockade by Intracellular Mg2+
The strong inward rectification of Kir2.1 currents is reportedly due to blockade of the outward current by cytoplasmic magnesium (Mg(2+)(i)) and polyamines, and is known to be determined in part by three negatively charged amino acid residues: Asp172, Glu224, and Glu299 (D172, E224, E299). Our aim was to identify additional sites contributing to the inward rectification of Kir2.1 currents. To a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016